Subject programme

- 1. Subject name / subject module: Diploma laboratory/ Diploma workshop
- 2. Lecture language: English
 - 3. The location of the subject in study plans:
 - Area or areas of the studies: Computer Engineering and Mechatronics
 - Degree of the studies: 1st degree studies
 - Field or fields (implementation of effects standard): Mechatronics
- 4. Supervision of subject implementation:
 - The Institute / Another unit: Institute of Informatics and Mechatronics
 - The person responsible for the subject: Szychta Elżbieta, prof. dr hab. inż.
 - People cooperating in the development of the programme of the subject:
- 5. The number of hours and forms of teaching for individual study system and the evaluation method

Teaching activities with the tutor																				
Mode of study		Form of classes													Total					
		SOW	ECTS	Laboratory work	SOW	ECTS	:	SOW	ECTS		SOW	ECTS		SOW	ECTS	 SOW	ECTS	 SOW	ECTS	ECTS
Full-time studies				4	71	2														2
Part-time studies						5														n
Credit rigor				graded as	signm	ent														

6. Student workload – ECTS credits balance 1 ECTS credit corresponds to 25-30 hours of student work needed to achieve the expected learning outcomes including the student's own work

Activity (please specify relevant work for the subject)	Hourly student work- load (full-time stud- ies/part-time studies)		
Participation in laboratory classes	4/0		
Preparation of technical documentation for engineering project	60/0		
Independent study of the subject	9/0		
Participation in an exam / graded assignment / final grading	2/0		
Total student workload (TSW)	75/0		
ECTS credits	3		
* Student's workload related to practical forms	75/0		
Student's workload in classes requiring direct participation of academic teachers	4/0		

7. Implementation notes: recommended duration (semesters), recommended admission requirements, relations between the forms of classes:

Formulated topic of the engineering project

Recommended duration of the subject is taken from the course plan.

8. Specific learning outcomes – knowledge, skills and social competence

Spe	cific learning outcomes for the subject	Form	Teaching method	Methods for testing of			
Outcome sym-				(checking, assessing)			
bol	Outcome description			learning outcomes			
		Knowle	dge				
	Student has basic knowledge of technical		inquiry methods,	Activity in class, Assessment of individual			
K_W11	standards and norms as well as the life cycle	Laboratory		work with tasks, measurements, structures			
	of mechatronic devices, facilities and	work		related to the implementation of an			
	systems.			engineering project			
		Skills	5				
	Student is able to obtain information (in		inquiry methods,	Activity in class, Assessment of individual			
	Polish and English) through the selection of			work with tasks, measurements, structures			
K_U01	sources, integrate them, make their	Laboratory		related to the implementation of an			
	interpretation, critical analysis and synthesis,	work		engineering project			
	as well as draw conclusions and formulate						
	opinions.						

Subject programme

	Student is able to use their knowledge - to
K_U02	formulate and solve problems and perform
	tasks typical for professional activity in the
	mechatronics industry.
К_U05	Student has experience and skills to use the
	norms and standards applicable in the
	mechatronics industry.
	Student is able to use information and
	communication techniques with particular
	emphasis on the creation of project
K_U07	documentation, the use of engineering
_	graphics (CAD software) for the purposes of
	implementing projects and smaller tasks in
	the fie
	Student is able to see and diagnose non-
к_U10	technical aspects, including legal, social,
	environmental and economic aspects in the
	context of the functioning of mechatronic
	systems at the stage of formulating and
	solving design, construction, implementa
	Student is able to evaluate the effectiveness,
K_U13	functionality and economics of existing
	devices and mechatronic systems.

9. Assessment rules / criteria for each form of education and individual grades

Activity	Grades	Calculation	To Final
Implementation of the content for engineering project	bdb (5)	5*50%	2,5
Ability to use standards	bdb (5)	5*10%	0,5
Preparation of technical documentation	bdb (5)	5*40%	2
Participation in the discussion	bdb (5)	5*10%	0,5
Final result			5

10. The learning contents with the form of the class activities on which they are carried out

Laboratory classes

- 1. Implementation of the practical part of the diploma project;
- 2. Collection of measurement results, conducting experimental tests;
- 3. Preparation of documentation.

11. Required teaching aids

Laboratory classes - specialist laboratory

Subject programme

12. Literature:

- a. Basic literature:
 - Sowińska B., Graduate's guidebook, Bydgoszcz, 2012, ISBN 978-83-61036-62-3.
 - Sowińska B., Rules for making footnotes, references and bibliography attached, Ed. 2 supplements and amendments, Bydgoszcz, 2012, ISBN 978-83-61036-548.
 - **b.** Supplementary literature:
 - Kaczmarek T. T., A guide for students writing a bachelor's or master's thesis [online] 2009 [access: August 30, 2011], Available on the World Wide Web:
 - Kawczyński S., The problem of plagiarism in higher education. Characteristic electronic antiplagiarism system, "E-mentor" [online], No. 2 (19) / 2007 [access: 26 July 2011], Available on the World Wide Web:, ISSN 1731-7428.
 - Maćkiewicz J., How to write scientific texts? Ed. 2 enlargement, Gdańsk, 1996, ISBN 83-7017- 694-1.
 - Majchrzak J., Mendel T., Methodology of writing master's and diploma theses, ed. 3 Poznań, 1999, ISBN 83-87152-69-2.
 - **c.** Internet sources:
- **13.** Available educational materials divided into forms of class activities (Author's compilation of didactic materials, e-learning materials, etc.)
- 14. Teachers implementing particular forms of education

Form of education	Name and surname					
2. Laboratory classes	Szychta Elżbieta, prof. dr hab. inż.					